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The dependency of the self-similar Rayleigh-Taylor bubble acceleration constantab(;fsamplituded /2g
3 sdisplacementd3 sAtwood numberd) on the initial perturbation amplitudeh0k is described with a model in
which the exponential growth of a small amplitude packet of modes makes a continuous nonlinear transition to
its “terminal” bubble velocity~Fr fequal tosFroude numberd1/2g. Then, by applying self-similarity(diameter
~ amplitude), ab is found to increase proportional to Fr and logarithmically withh0k. The model has two free
parameters that are determined from experiments and simulations. The augmentation of long wavelength
perturbations by mode coupling is also evaluated. This is found to decrease the sensitivity ofab on the initial
perturbations when they are smaller than the saturation amplitude of the most unstable modes. These results
show thatab can vary by a factor of 2–3 with initial conditions in reasonable agreement with experiments and
simulations.
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I. INTRODUCTION

The Rayleigh-Taylor(RT) instability [1,2] occurs when a
fluid of densityrl accelerates another fluid of densityrh.rl.
If the unstable perturbations are broadband in wave numberk
and attain large amplitudeshk.1/k, the instability evolves
self-similarly such that the dominant wavelength grows with
the amplitude. Then, for a constant accelerationg, the light
fluid penetrates the heavy fluid as bubbles with amplitude
[3–29]

hb = ab Agt2, s1d

where A=srh−rld / srh+rld is the Atwood number. Experi-
ments f7–14g with immiscible liquids obtain ab
,0.04–0.07 whereas numerical simulationssNSd initial-
ized with only short wavelength perturbationsf15,16,29g
obtain ab,0.03. Glimm et al. [17] obtain a larger value
ab,0.05 that increases to 0.08 when front-tracking(FT) is
employed thereby suggesting that numerical diffusion could
reduce ab. However, other NS with FT[18] obtain ab
,0.05 and NS[29] with and without interface reconstruction
(IR) obtain ab,0.03 because the fluid entrainment with IR
is found to be similar to the numerical diffusion without IR.
Thus the numerics may not be responsible for all of the dif-
ferences inab. For example,ab may depend on the initial
conditions[3–6,11,14,19,27] since NS[11] show that adding
an initial long wavelength component as small as 0.01l can
doubleab.

A strict analytical theory forab is not yet available to
clarify these issues, but Eq.(1) can be obtained by combin-
ing the two key characteristics of RT bubbles, namely, that
(1) their characteristic velocity is proportional to that of a
single bubble[30–50]

Vb = FrÎdr

rh

gDb

2
s2d

ands2d their diameter grows self-similarlyDb~hb. Then, Eq.
s2d yields Eq.s1d with

ab =
Fr2

8

Sr

rh

Db

hb
, s3d

wheredr;rh−rl, Sr;rh+rl and Fr is a constant equal to
sFroude numberd1/2. For A=1, potential flow models and
experiments yield Fr,0.5 for a bubble in a cylinder
f30–34,37g and Fr,2/3 for a lenticular bubble in an infi-
nite fluid f31,36g. For A,1, Eq. s2d can be obtained by
equating buoyancysdrgd and drag sCdrhVb

2/Dbd forces
such that Fr~1/ÎCd f26,30,40g. In general, Fr depends on
the shape and environment of the bubble since they form
the streamlines in the heavy fluidf31,32,36g. These issues
are discussed further in in Secs. II and III.

The more complex and unresolved issue is associated
with the self-similar evolution of the bubbles to successively
longer wavelength. This can proceed in two limiting ways,
namely, by(1) the nonlinear coupling of saturated shorter
wavelength modes, or(2) the exponential amplification and
saturation of ambient modes.

The first mechanism is invoked in bubble merger models
[21–26,18] and leads to anab that depends primarily on the
merger rate since it determinesDb/hb in Eq. (3). Since the
mode-coupling or merger process is nonlinear and involves
saturated modes of intrinsic scalesshk,1/kd, the associated
ab is insensitive to the initial conditions and perhaps univer-
sal. However, if one uses the observedDb/hb,0.55rh/Sr
[13,14] and Fr,1/Îp for a periodic array, then Eq.(3)
yields ab,0.022, which is smaller than observed. In the
second process, the longer wavelength modes are produced
by the unstable amplification and nonlinear saturation of the
initial perturbations. Since the linear growth is exponential,
ab may depend logarithmically on the initial conditions
[3–6,11,14,19,27] but the dependence has not yet been quan-
tified.

In this paper, the effect of initial conditions onab is
evaluated quantitatively using simple model calculations.
The model has two free parameters that are determined by
comparing the results with published experiments and NS. It
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is important to clarify these issues quantitatively because so-
called “mix models”[8,21–26,51–59] are calibrated withab.

The dependence ofab on the initial perturbations is ob-
tained from known single mode dynamics, namely, by meld-
ing the classical RT exponential growth at small amplitude to
the terminal bubble velocity at large amplitude. To preserve
continuity in amplitude and growth rate, the nonlinear tran-
sition (attributed to Fermi in Ref.[32] is taken to be when
the linear velocity equals the terminal velocity and this oc-
curs nearhk,1/k when the growth rate is classicalG
,ÎAkg. The resulting equations are similar in form to those
introduced by Birkhoff[3] and extended by Cherfils and Mi-
kaelian[4] for single modes. However, in the turbulent RT
instability, the wave spectrum is broad and nearby modes can
interfere constructively as described by Haan[51,52]. As a
result, nonlinear saturation occurs when the root-mean-
square(rms) amplitude of the wave packet is comparable to
its average wavelength and the saturation amplitude of the
individual components are reduced by a phase-space factor
to hk,1/k2L in three dimensions(3D), whereL is the sys-
tem width. Such a suppression in a multimode system was
observed directly in the beam-plasma instability[60,61].
More importantly, the rms amplitude of the multimode wave
packet was found to evolve into the nonlinear regime just
like a single mode until the beam electrons resolved the
spectral width. This implies that bubbles with a spectral
width dk can be represented on a rms basis as a single domi-
nant bubble for an autocorrelation time~1/Vbdk after satu-
ration. This approach is used here to adapt Birkhoff’s solu-
tion for individual modes to the bubble wavepacket, and for
arbitraryA and initial perturbation spectra. Then, by invok-
ing self-similarity, we obtainab and Db/hb in terms of the
initial perturbations and Fr. Fr is then obtained by analyzing
images of RT bubbles in the linear electric motor(LEM)
experiments[12–14]. The initial amplitudes on the LEM are
inferred from early-time images taken with laser induced
fluorescence(LIF).

The augmentation of the long wavelength perturbations
due to mode coupling is also evaluated in Sec. V by applying
Haan’s analysis[52] to describe the nonlinear production of
long wavelength,L modes by the most unstable modes. The
mode coupling component is then added in quadrature[52]
to the amplified ambient perturbations to obtain anab that
spans the two limiting regimes. As expected,ab is found to
be insensitive to the initial conditions when the ambient long
wavelength modes are smaller than the saturation amplitude
of the most unstable modes. Coincidentally, many published
NS [16–20] are initialized with such perturbations and the
present model is able to describe their results. Mode cou-
pling is found to have a minor effect for relatively large and
broadband initial perturbations. It should be pointed out that
the mode-coupling contribution described here is not a gen-
eral theory of mode coupling since it does not describe the
usual progression to longer wavelength by a cascading pro-
cess. The latter is done better by the merger models
[21–26,18].

Please note that this paper considers only 3D perturba-
tions with a total wave numberk=Îkx

2+ky
2 wherekx and ky

are the components in two directions transverse togẑ.

II. BASIC MODEL

The basic model is obtained by adapting the evolution of
a single-mode to a multimode wave packet centered at the
wave number of the dominant bubble. The single-mode so-
lution [3] grows exponentially at small amplitude and with
the terminal bubble velocity at large amplitude. As was done
successfully in the beam-plasma instability[60,61], the
single-mode solution is attributed to the root-mean-square
(rms) amplitude of a multimode bubble wave packet[51] but
with an evolving dominant wavelength[3] for the RT insta-
bility.

A. Single-mode solution

At small amplitudekhk!1, it is well known that RT un-
stable perturbations grow as

hk = h0k coshsGtd. s4d

If the number ofe-foldings isGtù2.3 samplificationù10d,
Eq. s4d can be represented by

hk ,
h0k

2
expsGtd, s5d

with ,1% error and this simplifies the algebra.
Generally, the linear growth rate isG,ÎAkgat low k and

is limited by various microscopic processes at highk [62].
For example, liquids with an interfacial surface tensions
have

G =ÎAkg−
sk3

rl + rh
, s6d

which has a peak valueG,0.82ÎAkpg at wave numberkp

=Îdrg/3s. Fluids with a viscosityn have a peak growth
rate of G,0.71ÎAkpg at kp,0.5sAg/n2d1/3. ln ICF, abla-
tion at the capsule surface produces an outward stabilizing
flow f63,64g with velocity va and a peak growth rateG
,0.5Îkpg at kp,0.1g/va

2. Modes withk.2–3 kp are sta-
bilized fully by surface tension and ablation flow, but only
partially by viscosity because the viscous retarding force
requires a finite velocity,Ghk. Eventually, modes with
k,kp will dominate and their growth rate isG,ÎAkg.

At large amplitude, a single(or periodic) bubble attains a
terminal velocity that increases withA. For A=1, Hecht,
Alon and Shvarts[34] extended Layzer’s potential flow
model [33] to a square periodic bubble arrayskx=kyd and
obtained

dhb

dt
=Îg

k
, 0.56Îgl

2
. s7d

Their result is equivalent to Layzer’s Fr,0.51 for abubble
in a cylinder with radiusR=3.83/k s3.83 is first zero of
Bessel functionJ0d. Goncharovf40g extended this analysis
to A,1 and obtained
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dhb

dt
, 1.02Î 2A

1 + A

g

k
, 0.58Î 2A

1 + A

gl

2
, s8d

which is consistent with Eq.s2d and a buoyancy-drag model
f26g if Db,l. Sohnf41g assumed a different potential in the
light fluid and obtained

dhb

dt
, CÎAgl

2
, s9d

which is consistent with Eq.s2d if Db,ls1+Ad /2. It is also
similar to the scaling suggested by Glimm and Lif21g and in
numerical single studiesf45–47g. Both Eqs.s8d ands9d have
the same limiting values atA=0 and 1, but potential flow
ignores the vortical motion surrounding the bubble atA!1
and this may affect the Atwood dependence. In particular, it
is surprising that both Goncharovf40g and Sohnf41g find the
radius of curvature to be independent ofA, namely, 3.35/k
and 4/k, respectively.

A comparison of Eqs.(8) and(9) with published 3D simu-
lations seems to favor Eq.(8) but not conclusively. In Fig. 1,
the scaled velocityVb/ÎAgl /2 from the simulations(points)
seems to decrease withA as suggested by Eq.(8). Analogous
agreement with Eq.(8) in 2D was reported by Alon.et al.
[26] and Mikaelian[42]. However, there is considerable scat-
ter in the simulations and there is some ambiguity between
Db andl. For example, 2D simulations by Daly[65] found
that

l , Db
Sr

rh
= Db

2

1 + A
, s10d

which is physically reasonable since the spikes are very nar-
row at A=1 so thatl,Db and they are identical to bubbles
at A=0 so thatl,2Db. This is inconsistent with 3D poten-
tial flow calculationsf40,41g that obtainl,Db independent
of A.

Given these ambiguities, the bubble velocity is taken to
have the form of Eq.(9) in developing the present model, but
C is a free parameter and is related to Fr as follows:

C = FrÎSr

rh

Db

l
= FrÎ 2

1 + A

Db

l
. s11d

As indicated previously, Eq.s2d leads to Eq.s9d if Db
,lrh/Sr and Eq.s8d if Db,l. This will be discussed fur-
ther in Secs. III and IV.

The linear and nonlinear single-mode solutions are then
combined simply by making a transition between them when
the linear velocityGhk equals the bubble velocity. This is
attributed to Fermi and occurs when

CÎAgl

2
, Ghk ,

Gh0k

2
expsGtNLd s12d

at a time

tNL ,
1

G
lnS 2C

Gh0k
ÎAgl

2
D . s13d

At t= tNL, the solution transitions from Eq.s4d to

hk = CÎAgl

2
F 1

G
+ t − tNLG . s14d

This is similar to the solution of Birkhofff3g and Cherfils
and Mikaelianf4g. As shown in Fig. 2, it also agrees with a
single-mode 3D simulation by Weber in the Alpha group
Collaborationf29g with 32 zones/l on each side andh0k
=0.001l. The linear growth rate is nearly classicalG
,0.95ÎAkg limited by numerical dissipation and the ter-
minal velocity isVb=1.34 cm/scorresponding to C,0.6.
The model solutionsdashed lined fits the simulation re-
sults within,1 % in the linear regime and within 21% in
the nonlinear regime similar to that in Refs.f32,42g. The
worst agreement occurs near the transition att=8 s when
the amplitude is1.72 cm in the simulations and dhk
,0.36 cm larger in the model. The model amplitude is
21% larger because the simulation begins the transition
about onee-folding before tNL and then approachesVb
more gradually. This also seen in Fig. 9 of Ref.f48g.
However, as we shall see below, this mode is expected to
dominate when hk,2l and the discrepancydhk
,0.41 cm isdhk/hk,3%, which is smaller than the ±5%
scatter inC exhibited in the simulations in Fig. 1.

B. Multimode bubble wave packet

It is now possible to describe the broadband(RT) insta-
bility by applying the single-mode solution to the(bubble)
wave packet of modes centered at the dominant wavelength
as suggested by DeNeef[60] for the beam-plasma instability
and Haan[51] for the RT instability. In the beam-plasma
instability, a single mode grows exponentially until its am-
plitude is large enough to trap the beam electrons and then
the amplitude oscillates as the electrons slosh in the sinu-
soidal potential. When experiments were repeated with a fi-
nite band of modes[60,61], it was found that thetotal wave

FIG. 1. Scaled bubble terminal velocity for a single 3D mode vs
Atwood number. The solid line represents Eq.(8) and the dashed
line is Eq.(9). Points are taken from the following publications:l,
Trygvasson and Unverdi[42]; P, Li [43,44]; ., Hecht[45]; j, He
[46]; L, Calder[47]; L, Alpha group[26].
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energy(modes added in quadrature) evolved identically to
that of a single modeuntil the electrons resolved the spectral
spread, namely, for an autocorrelation time after saturation.
For the broadband RT instability, Haan[51,52] made the
similar argument that saturation occurs when the overall am-
plitude of the entire band of dominant modes becomes com-
parable to their average wavelength. The idea is that modes
within this bubble wave packet can interfere constructively
to produce a net amplitude that greatly exceeds the indi-
vidual modal amplitudes. In both cases, the hypothesis is that
the rms amplitude of a multimode wave packet

khkl ; F L2

2p
E

k−dk

k+dk

dk8k8hk8
2 G1/2

s15d

evolves similarly to the single mode solution for some auto-
correlation time into the nonlinear regime. Thus saturation
occurs whenkhkl becomes comparable to the dominant
wavelength, but the individual mode amplitudes are smaller
by the phase space factorkL in 3D, i.e., hk~1/k2L This
suppression was observed directly in the beam-plasma insta-
bility f60,61g.

The effective width of the wave packetdk will be esti-
mated in Sec. III B, but it is first useful to review the ex-
pected evolution of an RT unstable spectrum. This is shown
schematically in Fig. 3 for a 1/k2 initial spectrum and two
times. The nonlinear modes are those that exceed the Haan
saturation amplitudehk~1/k2L (dashed line) and these have

k.ks. Bubbles are associated with the spectral peak atkb
with amplitudehb=khkl. At the early timet1, the bubbles are
comprised of the fastest growing waveskb,kp. As time in-
creases tot2, slower-growing longer-wavelength modes over-
take the initially saturated modes and all scales 1/ks, 1 /kb
andhb grow self-similarly. In this picture, the wave packet is
comprised of the dominant bubbles that have just become
nonlinear with an effective widthdk~kb−ks.

Within this picture, the single mode solution in Sec. II A
is adapted to the multimode RT instability by assigninghb
=khkl. Then, the Fermi transition is applied to the wave
packetkhkl by equating the linear and nonlinear velocities

Ghb = CÎAglb

2
. s16d

The fastest growing modesk,kp will saturate first and they
have G,ÎAkg, but the longer wavelength modesk,kp
that dominate the later stages have a nearly classical
growth rateG,ÎAkg. The classical modes transition at an
amplitude

kbhb = kbkhkl , CÎp s17d

and a time

tNL ,
1

ÎAkbg
lnS 2CÎp

kbkh0kl
D . s18d

For tù tb, the solution to Eq.s9d can then be written as

hb = CÎpF 1

kb
+ÎAg

kb
st − tNLdG . s19d

The evolution ofhb is exemplified for constant mode num-
bersn=kL/2p by the dashed lines in Figs. 4sad and 4sbd for
kkh0kl=10−6 and 10−3, Fr=2/3 andA=1. Each mode tran-
sitions from an initial exponential growth to a terminal
velocity with a continuous slope attNL indicated by solid
points. A key finding is that the envelopesthick solid lined
obeys Eq.s1d as fast growing high-k modes saturate and
are overtaken by slower growing low-k modes. sPlease

FIG. 2. (a) Amplitude and(b) velocity for a 3D single mode
with A=0.5, g=2 cm/s2, andl=10 cm. The solid line from simu-
lations by Weber in Ref.[26] and the dashed line given by Eqs.(4)
and (14) with G=0.95ÎAkg andC=0.6.

FIG. 3. Schematic representation of the perturbation spectrum at
various times 0, t1, t2. Dominant bubbles have wave numberkb

and modes saturate atks when they exceed the Haan saturation
amplitude Eq.(25) (dashed line).
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note that when a moden is the dominant mode, the mode
n/4 has just become nonlinear as indicated by the points.d
Thus, Eq.s1d can be thought of as a nonlinear progression
to successively longer wavelength packets or like a com-
petition of noninteracting bubbles. This process results in
a self-similar evolution as seen in Fig. 4scd since the
wavelength of the dominant bubblelb also increases as
gt2. It is noteworthy that the dependence onkh0kl is weak
since ab,0.022 andlb/hb,0.36 at kkh0kl=10−6 and ab

,0.045 andlb/hb,1.12 atkkh0kl=10−3.
Following Birkhoff [3], the self-similar evolution of the

dominant bubbles can be obtained by seeking the wavelength
that maximizes Eq.(19). This is done by setting

] hb

] lb
,

C

2Îp
FÎ Ag

2lb
t + 1 − lnS CÎp

kbkh0kl
DG = 0, s20d

assuming thath0k,k−2 because that makeskkh0kl indepen-
dent ofk. The solution to Eq.s20d is

lb ,
pAgt2

2FlnS 2CÎp

kbkh0kl
D − 1G2

. s21d

Inserting Eq.s21d into Eq. s19d yields Eq.s1d with

ab ,
CÎp

4
FlnS 2CÎp

kbkh0kl
D − 1G−1

s22d

and a self-similarity ratio

bb ;
lb

hb
,

2Îp

C
FlnS 2CÎp

kbkh0kl
D − 1G−1

. s23d

This analysis extends that of Birkhoff in two simple ways.
First, Birkhoff considered onlyA=1 since the nonlinear so-
lution was obtained from potential flow whereas this is ex-
tended toA,1 based a buoyancy-drag description. Second,
Birkhoff f3g ascribed the solution to individual modes and
assumed thath0k,k−1 to keepkh0k constant. Here, the solu-
tion is ascribed to the bubble envelope in an rmssense and
kkh0kl is constant only whenh0k,k−2 as suggested by In-
ogamovf5,6g. However, to his credit, Birkhoff appears to
be the first to have predicted the self-similar behavior
embodied in Eqs.s1d, s22d, and s23d, and based on what
was thought to be practicalkh0k,10−3, he predicted an
ab,0.12 andbb,1 close to what was measured decades
later.

However, in general,ab and bb can depend onkkh0kl as
exemplified in Fig. 5 from Eqs.(22) and (23) for C=0.56
and 0.95. The behavior can be understood by noting that the
dominant modes are those just beyond saturation. Since the
time to saturationtNL decreases as the initial amplitude in-
creases,ab and bb increase withkh0kl, but only logarithmi-
cally because the initial growth is exponential.ab increases
with C because it increases the terminal velocity butbb de-
creases withC because a mode must be amplified further to

reach the larger terminal velocity. Please note that inertiaḧb
is neglected when applying self-similarity or bubble merger
to a constant terminal velocity, but the associated error in Eq.
(22) is 2ab,10 %.

III. MODEL CONSTANTS

The model has two unknown constantsC and«b. The two
output parameters vary asab~C andbb~1/C and increase
logarithmically with«b. Physically,C is related to Fr by Eq.
(11) and determines the bubble “terminal” velocity. In this
model, it also absorbs possible uncertainties in the transition
between the linear and nonlinear solutions. The relative spec-
tral width «b defines the spectral content of the bubbles and
is used to relate the bubble rms mplitude to the initial Fourier
spectrum of the perturbations.

A. Bubble velocity ÊC

The value ofC,0.95 required to describe the LEM re-
sults(Sec. IV) is larger than the classic result of Fr,0.5 for
a single bubble in a tube withA=1 [30–32] but it is compa-

FIG. 4. Scaled solutions to Eq.(10) (broken lines) for A=1 and
kkh0kl=10−6 (a) and 10−3 (b). The envelope of modes(gray solid
line) follows Eq. (1). (c) Wavelength of the dominant mode that
comprises the envelope.
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rable to Fr,1 obtained for RT bubbles[43,21,22,14] and
Fr,1.2 for plumes[35]. This was first pointed out by Lewis
[43] and clarified further by Glimm and collaborators
[21–24]. The uncertainty arises because the velocity of a
bubble is determined by its shape and environment[32,35]
since they form the streamlines of the flow and they are
complex in the chaotic RT bubble front.

The two classic configurations cited in the RT literature
are shown in Fig. 6:(a) long columnar bubble bounded in a
cylinder of diameterD and(b) a short lenticular bubble in an
extended fluid. The shape of a bubble is approximated by its
radius of curvature near the apexRc and its vertical extent
Lb. The environment is characterized by the area around the
bubble that accommodates the counterflow of the “heavy”
fluid. Namely, to counter the upward flow of the bubble, the
downward velocity of the displaced “heavy” fluid(and drag)
is larger for a bounded bubble than for an unbounded bubble
because the surrounding area is smaller.

The scaled velocities for individual bubbles are summa-
rized in Table I. Experiments and potential flow calculations
yield a velocity 0.5ÎgD/2 for a bubble bounded in a cylinder
and 0.67ÎgRc for an unbounded lenticular bubble. Collins
[36] consolidated these results by considering the effect of a
cylindrical boundary of arbitraryD /2Rc. For the bounded
bubble, the cylinder is found to deform the bubble so that
Rc,1.04D/2 and Fr,0.51. For the unbounded bubble, he
uses the last closed circular streamline to define an effective
sphere for the lenticular bubble withDb,2Rc and obtains
Fr,2/3 similar to Davies and Taylor[31].

For individual RT bubbles, the scaled velocities were
measured to be 0.7–1.2[21,22,14] similar to that for plumes
,1.2 [35]. Indeed, by comparing the images in Figs. 1–3 of
Ref. [35] and Fig. 11 in Sec. IV, one sees that plumes and RT
bubbles appear to be long and unbounded. And both features
tend to increase Fr. The importance of the length can be
understood from the drag constant of an ellipsoid of revolu-
tion [66], which yields an Fr~Lb/Db. Of course, this is in-
tuitively clear to those who draft behind vehicles in bicycle
and automobile races.

The RT bubble front has been approximated by a square
periodic lattice of bubbles. As seen in Table II, potential flow
calculations reproduce the results(Rc,1.04D /2 and Fr
,0.51 of Collins for a bounded bubble iflb,D and 3D
simulations obtain slightly higher values of Fr,0.5–0.74.
However, a perfectly periodic configuration is not an accu-
rate representation of a chaotic RT bubble front since it un-
derestimates Fr and thusab.

This discrepancy may by due to the unstable nature of a
uniform periodic lattice[21–24]. For example, suppose that
bubbles 2 and 4 in the uniform front(solid) in Fig. 7 are
perturbed forward slightly. These bubbles may experience a
smaller counterflow of the “heavy” fluid like an unbounded
bubble and the reduced drag will further increase their ve-
locity ahead of their neighbors. To quantify this effect,
Glimm and Li [21] suggested a superposition hypothesis in
which “the effective bubble velocity is the sum of the single
bubble velocity and the single bubble velocity of the enve-
lope.” For example, if the chaotic bubble front is modulated

FIG. 5. Variation ofab and bb with kkh0kl from Eqs.(13) and
(14) for C=0.95 (solid lines) and 0.56(dashed lines). Ellipses sig-
nify LEM results.

FIG. 6. Schematic of(a) a bubble bounded in a cylinder and(b)
a lenticular bubble in an extended fluid.

GUY DIMONTE PHYSICAL REVIEW E 69, 056305(2004)

056305-6



at 2lb as shown in Fig. 7, the hypothesis suggests that the
leading bubble velocity is augmented byÎ2 to that observed
Fr,0.51s1+Î2d,1.2. Cheng, Glimm and Sharp[24] ex-
tended this analysis to 3D and obtainedab,0.05–0.06 and
Db/hb,1/3 independent ofA. However, rather than invok-
ing bubble interactions, the leading RT bubbles may simply
behave like plumes in an extended bath and they have Fr
,1 because they are unbounded and long vertically[66].

Independent of this model, it is important to have Fr,1
because then Eq.(3) yields ab,0.06 for the observed
Db/hb,0.5rh/Sr [Fig. 13(b)] instead ofab,0.024 for Fr
,0.56. Oron et al. [18] increasedab by increasing the
bubble merger rate so thatlb/hb,1, but this is 2–3 times
larger than observed in Fig. 13(b). Cheng, Glimm and Sharp
[24] were able to obtainab,0.05–0.06 withDb/hb,1/3 by
invoking an envelope instability for a chaotic bubble array.

B. Bubble spectral width Ê«b

The model in Sec. II depends primarily onC if written in
terms of the bubblehb or rms amplitudeskhkl. However, in

order to calculatekh0kl from the spectral amplitudesh0k, such
as from an ICF capsule or a simulation, it is first necessary to
obtain the effective spectral widthdk for the integral in Eq.
(15). This can be done by defining a second free parameter

«b = dk/k s24d

that describes the spectral width of the dominant bubbles. In
the following, we estimate«b,3/8 and this is similar to the
effective spectral width obtained in the bubble merger model
fFig. 6scdg of Oronet al. [18]. In any case, the model results
are not very sensitive to«b becauseab andbb depend only
logarithmically onkh0kl~Î«b. Thus, for a given initial spec-
trum h0k, decreasing«b by a factor of 4 would effectively
reducekh0kl by a factor of 2. From Fig. 5, this would reduce
ab andbb by only 8% for LEM conditions.

TABLE I. Scaled bubble velocity from single-mode experiments, potential flow models and 3D nu-
merical simulations, and in RT experiments.

A
Vb

ÎgD/2

Vb

ÎgRc

Vb

Îg.5Dbdr /rh

Bubble in cylinder

Experiment[30] 1 0.48

Potential flow[30] 1 0.49

Experiment[31] 1 0.48

Potential flow[31] 1 0.46

Potential flow[32] 1 0.51

Potential flow[36] 1 0.5 0.51

Bubble in large bath

Lenticular bubbles[31] 1 0.67

Potential flow[36] 1 0.65

Plumes[35] !1 1.2

Bubbles in RT experiments

Lewis [43] 1 1.1

“Rocket rig” [7,8,21–24] 0.5–0.99 0.7–1.2

LEM [13,14] 0.2–0.96 0.7–1.0

TABLE II. Scaled bubble velocity atA=1 from 3D potential
flow models. The last two entries, marked with an astersisk,
extended the analysis toA,1, but with different results.

Vb

Îglb/2

2Rc

lb

Vb

ÎgRc

Bubble in cylinder[30–36] ,0.5

Hecht, Alon, Shvarts[34] 0.56 1.22 0.51

Inogamov and Abarzhi[37] 0.56 1.02 0.55

Abarzhi [39] 0.59 1.27 0.52

Goncharov*[40] 0.58 1.07 0.56

Sohn* [41] 0.56 1.27 0.50 FIG. 7. Schematic of a periodic bubbles array in dashed lines
and with bubbles 1 and 4 perturbed forward in solid lines.
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«b can be estimated by representing the nonlinear wave
packet(modes above dashed line in Fig. 3) with a spectrum
peaked atkb and bounded symmetrically by the newly satu-
rated modeks, such thatdk,skb−ksd /2. This is similar to the
bubble distribution in Fig. 6(c) in Oron et al. [18]. Then,dk
is obtained by identifyingks at the time that the dominant
bubble haskb, but this must be done self-consistently be-
cause the saturation amplitude

hks
,

Cp

Lks
2Î k

dk
s25d

itself depends on the spectral width. Equations25d resembles
the Haanf51g result and is obtained using Eqs.s15d ands17d
by assumingdk2/k2!1.

From self-similarity, the dominant bubble haskb

=2p /bbhb at a timetbÎ2p /Agbbabkb. The modeks that has
just saturated att= tb is obtained by combining Eqs.(5) and
(25). This yields

ÎAksgtb
2 = lnS2hks

h0ks

D . s26d

Using Eqs.s21d–s23d, this can be rewritten as

Î kb

4ks
=

lns2CÎp/kkh0kld − 1

lns2CpÎk/dk/Lk2h0kd
, s27d

where the right-hand sidesRHSd is evaluated atk=ks. Equa-
tion s27d has a simple solution for an initial spectrum of the
form

h0k = x/Lk2 s28d

because

kkh0kl , xÎdk/pk s29d

and the arguments on the right-hand sidesRHSd of Eq. s27d
are both,2Cp /xÎ«b. Then, for xÎ«b!2Cp /e, the RHS
,1 and the solution isks,kb/4. fThis is similar to Fig. 4
in which a packet at moden/4 becomes nonlinearspointd
when moden is dominant.g This result suggests that
dk/k,s1−ks/kbd /2,3/8, which is consistent with the
bubble distribution obtained by Oronet al. [18] [Fig. 6(c)].

In order to demonstrate the sensitivity of the model to«b
and the spectral shape, consider the measured initial spec-
trum of a glass ICF capsule shown in Fig. 8.h0k (solid line)
decreases ask−2 until mode 20 and then remains fairly flat
out past mode 100. The corresponding value ofkkh0kl for
«b=3/8 isalso shown as a dashed line and it is relatively flat
only whenh0k~k−2. Physically, this occurs because the num-
ber of e-foldings required for a wave packet to reach satura-
tion is independent ofk. For modes.20, kkh0kl increases
with k because the spectrum exceeds thek−2 extrapolation
from smallk. Since the high mode numbers dominate early
in time, the initial growth is expected to haveab,0.08 for
kkh0kl,0.01. Later, if the self-similar evolution reaches
mode 20, thenab will remain constant at,0.05 since
kkh0kl,0.0004. When such a value ofab was used to cali-
brate a turbulence mix model, the calculation reproduced the

observed degradation of neutron yield[67]. If the value of«b
is reduced by a factor of 4, then the corresponding values of
kkh0kl would be 50% smaller than the dashed line for this
measured spectrum, but the values ofab would be reduced
by ,10 %.

IV. COMPARISON WITH LEM EXPERIMENTS

A more direct comparison can be made with the planar
and incompressible experiments on the LEM. The initial am-
plitudes are evaluated here by analyzing the early LIF im-
ages[12–14] before strong nonlinearities develop. A sample
bilevel image taken with a thin laser sheet at 16 ms is shown
in Fig. 9(a) over the central 4 cm regionsL=7.3 cmd for
rh=1.57 g/cm3, rl =1.04 g/cm3, g,70 g0 (g0=Earth’s grav-
ity), ands,4 dyn/cm. The corresponding interface profile
is shown in Fig. 9(b) with a magnified vertical scale and
averaged overdx=0.03 cm to reduce pixel noise. Its Fourier
power spectrum, shown in Fig. 9(c), is dominated
(,80% of energy) by a group of modes centered atk
,38 cm−1 and an rms amplitudekhkl,0.045 cm withindk
, ±12 cm−1. The central wave number can also be obtained
by counting bubbles(24 in 4 cm) and from correlation analy-
sis. This data is used to infer the initial rms amplitudekh0kl
by inverting Eqs.(5) or (19). If modes neark,38 cm−1 grew
exponentially throughout, they would haveeGdt,10.4
e-foldings and an amplification of expeGdt,16000. Then,
inverting Eq. (5) implies kh0kl,2.7310−6 cm. However,
since kkhkl,1.7 in Fig. 9, this wave packet has become
weakly nonlinear and exceeds Eq.(17) and it is more valid to
invert Eq. (19). This can be done using the bubble velocity
Eq. (9) while kkhklù1 (assume Fr=0.56 for a maximal ef-
fect) and exponential growth Eq.(5) for kkhkl,1. This
yields a 50% larger value ofkh0kl,3.8310−6 cm. Given
this uncertainty, the data implies thatkkh0kl,s1–1.5d
310−4.

A similar analysis of 20 data points under a variety of
conditions suggests that the perturbations are seeded by the
initial vibrations on the LEM becausekkh0kl is found to in-

FIG. 8. Measured spectrum(solid) for a glass ICF capsule and
effectivekkh0kl (dashed) for «b=3/8. Thedotted line indicatesk−2

variation.
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crease withg as shown in Fig. 10. The open diamonds are
obtained assuming exponential growth Eq.(5) and the closed
diamonds use Eq.(19) to account for the slight nonlinearity
during the final,1 ms and are 50% higher. In these initial
data, the observed wave number is typicallyk
,25–45 cm−1 and the inferred amplification iss1–16d
3103. The results can be clustered into two groups with

kkh0kl=s4±2.7d310−4 for g,s30–100dg0 and kkh0kl
,s3.6±2.7d310−3 for g,500 g0. These initial perturba-
tions are indeed small but greatly exceed the thermal fluc-
tuations[51]:

h0k =
1

L
Î kBT

drg0 + sk2 , s30d

wherekB is Boltzmann’s constant andT is temperature. The
expected rms thermal amplitude iskh0kl,ÎkBT/s
,10−7 cm with a fastest growing mode ofkp,50 cm−1.
Thus, the thermal fluctuations havekpkh0kl,5310−6 and
are much smaller than those inferred on the LEM by a
factor ofg/g0 and this suggests vibrations as a source. The
large scatter in the data may be due to the uncertainty in
amplification because a 10% error inG translates to a
factor of 3 uncertainty inkh0kl. This would require a100%
uncertainty ins, which is unlikely because it was mea-
sured f13g in situ to 20% using the capillary method. A
second source of error may be due to the 30% spread ink
in Fig. 9scd becauseG varies by 10% in this spectral range.
This may be mitigated by the fact that the modes become
correlated in the nonlinear phase. In addition, the initial
spectrum is assumed to bek−2 with the same value of
kkh0kl throughout each experiment. This is consistent with
the observationsf13,14g that ab is constant in time for
most cases. For these various reasons, our reported values
of kkh0kl for LEM experiments should be regarded as ap-
proximate,exps±1d and more direct early time measure-
ments would be useful. This may require laser scattering
because the amplitudes are small.

The LEM measurements[12–14] of ab,0.05±10% and
bb,0.55±25% and (at A=1) were obtained with g
,s30–100dg0 for which kkh0kl,4±2.7310−4. With these
values, it can be seen in Fig. 5 that the present model is able
to describe the LEM observations ofab and bb with C
,0.95 (solid line). The data is inconsistent with theC
,0.56 (dashed line) expected from potential flow for a
square lattice[34] even with the large experimental uncer-
tainty in kkh0kl becauseab and bb vary differently with C.
With C=0.56, the agreement forab would be improved by
increasingkkh0kl tenfold but it would be degraded forbb and
vice versa ifkkh0kl is decreased.

The value of Fr can be obtained independent of this model
by analyzing individual bubbles in RT experiments
[21–24,43,44]. This is exemplified here with a bilevel LIF
image in Fig. 11 for the same conditions of Fig. 9 but at
gt2/2,90 cm. The five bubbles comprising the front have
Db,0.6±0.23 cm. Inserting this into Eq.(2) with their ve-
locity taken asVb,2abAgt yields Fr,0.81±0.16.Db was
also measured at different Atwood numbers with LIF and
backlit photography[14]. Applying the above analysis to this
data yields the solid points in Fig. 12 which have an average
value of Fr,0.88±0.15. This value is,20% smaller than
obtained in a similar way by Lewis[43] and Glimm[21,22]
and Li [41] (open circles) for the “rocket rig” experiments
[7,8]. Scorer[35] analyzed plumes and found Fr,1.2 when
he accounted for the density dilution as they spread. The

FIG. 9. Analysis of LIF images from the LEM taken at 16 ms to
obtain effective initial amplitude.(a) Bilevel image,(b) transverse
interface profile, and(c) Fourier power spectrum. The dashed line
represents a Gaussian wave packet centered at the dominant mode.

FIG. 10. Inferred initial amplitude on the LEM for various ac-
celerations using the same analysis as in Fig. 9. Open diamonds
assume exponential growth[Eq. (4)] throughout and solid diamonds
assume the full nonlinear solution[Eq. (19)]. The thermal fluctua-
tions are estimated from Eq.(30). The group atg/g0,30–100
represents the data used to measureab and Db/hb and it has an
average value ofkkh0kl,4.0±2.7310−4.
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values of Fr inferred from the LEM may be low because
such a dilution due to entrainment is not taken into account.
The LIF images[13,14] like those in Fig. 11 exhibit some
entrainment but the laser beam is too thick to quantify this
accurately.

The LEM data[14] is compared with the present model
over a comprehensive range ofA in Fig. 13. The lines from
the model are obtained withkkh0kl,4310−4 but there is
a±70% uncertainty inkkh0kl. ab is compared directly in(a)
but the self-similarity ratio in(b) is represented byDb/hb
since that is what was measured on the LEM. However, the
model is based onlb/hb and a transformation betweenDb
andlb is required to relate Eqs.(2), (8), and(9) as discussed
in Sec. II A. Thus two model calculations are shown in Fig.
13. The dashed lines are with a constantC=0.95 in Eq.(9)
or, equivalently, with Fr=0.95 in Eq.(2) and assuming the
Daly hypothesisDb=lbs1+Ad /2. The solid lines are with
C=0.82Î2/s1+Ad in Eq. (9) or, equivalently, with Fr=0.82
in Eq. (2) and assumingDb=lb. The first case obtains a

constantab,0.052 and a linearly increasingDb/hb with A.
In the second calculation,ab decreases slightly withA
whereasDb/hb increases slightly withA. Both are consistent
with the data within the experimental scatter.

In both cases, the experimental data show that the leading
RT bubbles have an Fr that exceeds that of a singlePERIODIC

ARRAY of bubbles, either directly in Fig. 12 and cited refer-
ences or within the context of this model in Figs. 5 and 13.
This realization caused Glimm and collaborators[21–24] to
suggest an envelope instability in which bubbles in a chaotic
array are catapulted by their neighbors. They proposed aug-
menting the single bubble velocity with the corresponding
velocity for a modulated envelope at 2lb and obtainedab
,0.05–0.06 withDb/hb,1/3. However, as discussed in
Sec. III A, this may not be necessary because any bubble that
is perturbed forward will behave more like an unbounded
plume with Fr,1 than a bounded periodic array with Fr
,1/2. Oronet al. [18] tried to compensate for the small Fr
of a periodic array by increasing the bubble merger rate, but
this made theirlb/hb,1, which is ,33 larger than ob-
served in Fig. 13.

V. AUGMENTATION OF LONG-WAVELENGTH
PERTURBATIONS BY MODE COUPLING

In many experiments and simulations, the growth rateab
is reported near the end of the time domain in order to mini-
mize any initial transients. In this limit, the value ofab is
determined primarily by the long-wavelength initial pertur-
bations becausehb,L /2 and they can be augemented by the

FIG. 11. Bilevel image from LIF for the same conditions as in
Fig. 9 atgt2,90 cm. The black region hasrh,1.57 gm/cm3 and
the white region hasrl ,1.04 gm/cm3. The diameters of five lead-
ing bubblesDb are indicated in cm.

FIG. 12. Fr obtained by analyzing individual bubbles in RT
experiments using Eq.(2): P, LEM [14]; s, Rocket rig[21]; L,
Lewis [40]; !, Plumes[32].

FIG. 13. Variation ofab andDb/hb vs A for LEM measurements
[14] (points) and model withC=0.95(dashed) andC=0.82(solid).
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nonlinear mode coupling of the most unstable modes at short
wavelengths. This is expected to reduce the sensitivity ofab
on initial conditions[4,46] and it is important in most mul-
timode NS[15–20] because they have been initialized with
perturbations primarily in a high wavenumber bandk0±dk0.
In such a case, low-k modeskødk0 are produced through
the nonlinear coupling of the more unstable high-k modes
that have saturated. This effect can be incorporated into the
present model by calculating the low-k products using Eq.
(15) from Ref. [52]:

Hk
2 , A2k2 L2

2p
E

k0−dk0

k0+dk0

dk8k8hk8
4 , s31d

wherescapitald Hk is the mode coupling product. The parent
waves neark0 saturate first at a time given by Eq.s18d and an
amplitude given by Eq.s25d so that

Hk
2 , A2k2C4p3

L2k0
6

k0

dk0
. s32d

Using Eq.s15d, the amplitude of the low-k wave packet is
then

kHkl , C2pA
k2

k0
3 . s33d

This amplitude is generated by mode coupling after the most
unstable modes have become nonlinear, i.e., fort. tNLsk0d.
However, to incorporate the mode coupling product into the
present model, it is first necessary to compensate for the
equivalent exponential growth from 0 totNLsk0d. Thus, the
equivalent initial amplitude due to mode coupling is obtained
by inverting Eq.s5d with expfÎAkgtNLsk0dg. This yields

kkH0kl , C2pA
k3

k0
3Sk0kh0ksk = k0dl

CÎp
DÎk/k0

. s34d

Typically, the dominant term isk3/k0
3 and the term in paren-

thesis is of order 20–50%. Haanf52g suggests adding the
ambient and mode coupling amplitudes in quadrature as

kh0kl = skh0kl2 + kH0kl2d1/2. s35d

h0k depends on both the amplitude and spectral shape of the
initial perturbations as will be exemplified below for two
spectra: one that decreases withk given by Eq. s28d and
another that peaks at a finitek0 like those used in the NS.

For a broad spectrum that decreases smoothly withk, the
initial saturation occurs for modes near the peak growth rate
so thatk0⇒kp andkkH0kl depends onk/kp. This is exempli-
fied in Fig. 14 for the spectrum of Eq.(28) where kkh0kl
~x. When the amplitude of the ambient low-k modeskh0kl
exceeds that of the initially saturated modes~C/kp, mode
coupling is not important andkkh0kl depends only onkkh0kl.
From Eqs.(34) and (35), mode coupling dominates when
kh0kl, kH0kl,0.1k2/kp

3 and this sets a lower bound on
kkh0kl that depends onk3/kp

3 rather thankkh0kl. Then, ifab is
determined from the total amplitudekkh0kl, as shown in Fig.
14(b) ab approaches a lower bound that is insensitive to the

initial amplitude. In fact, the minimumab depends primarily
on k/kp and this translates to an asymptotic dependence of
ab on Reynolds number for a system in whichkp is deter-
mined by viscosity andk,2p /L.

Since this lower bound ofab is thought to be its most
fundamental value because it is most insensitive to initial
conditions, the NS were designed to accentuate mode cou-
pling. This is done with initial perturbations peaked at a fi-
nite k0 and deficient at lowk. Some high resolution 3D NS
are summarized in Table III and most are initialized robustly
with modes numbersn0.10 that are nearly nonlinear, i.e.,
k0kh0k0

l,0.1–1. When the initial spectrum is a shell in k
space[16], the low-k modes are produced entirely by mode
coupling and the analysis differs slightly from that associated
with Fig. 14. A crude attempt at evaluating mode coupling is
shown in Fig. 15. For the annular spectra, the low-k product
kkH0kl is evaluated by Eq.(34) with C=0.95 andA=0.5. The
NS haveA=0.5 except that of Younget al. [20] which uses
the Boussinesq approximation and is most valid forA!1.
The most important uncertainty in evaluating these NS is
identifying which low-k mode dominates at the late time
whenab is determined. The points in Fig. 15 are obtained by
assuming the lowest modek=2p /L as a limiting case. This
seems reasonable since the more detailed calculation by
Haan[52] shows in his Fig. 3 that the mode coupling product
increases only(2–3) fold from mode 1 to 5. However, these
values ofkkH0kl should be regarded as minimum values(see
error bars) except for Ref.[20] for A !1. Even with this
large uncertainty, the solid points exhibit a slow increase in

FIG. 14. The total effective initial amplitudekkh0kl including
the mode coupling product using Eqs.(34) and (35). The accelera-
tion constantab is obtained by substitutingkkh0kl for kkh0kl in Eq.
(22).
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ab with kkH0kl similar to the present model(lines) with C
=0.95 (solid) and 0.56(dashed). The 3 cases of Cook and
Dimotakis [19] are interesting because they have the same
initial rms amplitudekh0k0

l,0.01L, yet they show an in-
crease inab as the initial peakn0 is reduced. The solid points
favor the smaller value ofC, but this may be due to the large
species diffusion[16]. Indeed, the open circles representing
the NS using front-tracking exhibit a larger value ofab.
(Please note thatk0kh0k0

l was not reported in Ref.[18] and
was taken as 0.5 here since they initialize with bubbles). It is
thought that front-tracking inhibits numerical diffusion
which can dilute the bubbles and reduce their effective buoy-
ancy. However, entrainment[28,29] may be fundamental to

the turbulent RT instability and can be inhibited by an ag-
gressive front-tracking scheme or with a high surface tension
[14]. Clearly, more NS are needed to clarify these issues but
with precisely reported initial conditions and self-similarity
parameterbb.

VI. SUMMARY AND DISCUSSION

A model has been presented here to quantify the effect of
initial conditions on the bubble acceleration constantab and
the self-similarity ratiobb for arbitrary Atwood number. The
model has two free parameters related to the terminal veloc-
ity (Fr or C) and the spectral distributions«bd of the domi-
nant bubbles. The coefficients are determined from numeri-
cal simulations and experiments. In particular, the initial
perturbations in the LEM experiments are estimated by ana-
lyzing the early time LIF images and Fr is determined from
individual bubble dynamics in late time images. It is found
that RT bubbles have Fr,1 more like plumes or unbounded
bubbles than a periodic bubble array in which Fr,1/2. The
model finds thatab~C andbb~1/C and that both increase
logarithmically with the initial perturbation amplitude. The
weak logarithmic dependence may be responsible for the
small variation in the measured values ofab,0.04–0.08
since such a variation inab corresponds to a factor of 100
variation in initial amplitude. The effect of mode coupling is
also evaluated and found to reduce the sensitivity ofab on
the initial perturbations when the long wavelength modes are
smaller than the saturation amplitude of the most unstable
modes. The model and results are described in more detail in
the following.

The model is based on Birkhoff’s[3] adaptation of Fer-
mi’s single mode solution[32] of the RT instability atA=1.
The exponential growth at small amplitude is taken to tran-
sition to the bubble terminal velocity at large amplitude with
a continuous slope and amplitude. This occurs nearhk
,1/k when the growth rate is classical. To describe the mul-
timode case, Birkhoff[3] allowed the dominant mode in the
nonlinear solutionhk to vary by setting]hk/]l=0. This
yielded self-similar solutions withab,0.12 andbb,1.0 for
an assumed initial perturbationh0k,10−3/k, within a factor
of 2 of measurements made decades later.

The present model makes two simple extensions to
Birkhoff’s analysis to arbitraryA and initial perturbations.
The extension to allA depends on how the bubble terminal
velocity varies withA. Since the result of Alonet al. [26] and
Goncharov[40] [Eq. (8)] differs from that of Sohn[41] and
Glimm and Li [21] [Eq. (9)] by a factor ofÎs1+Ad /2, the
velocity was taken to have the form of Eq.(9) but with a
constantC that can very slowly withA to accommodate Eq.
(8). Both formulations can be obtained from the classic result
Eq. (2) by changing the relation betweenDb andlb, and they
are consistent with 3D simulations(Fig. 1) within their scat-
ter. The second extension is related to how a single mode
solution can be applied to the more realistic multimode en-
vironment. This was done here using the model of DeNeef
[60] for the beam-plasma instability and Haan[51,52] for the
RT instability in which the rms amplitude of a multimode
wave packet is found to evolve just like that of a single mode

TABLE III. Summary of recent high resolution NS of multi-
mode RT: average initial modes numbers, rms initial amplitude, and
acceleration constant, all done withA=0.5 except[20], which uses
the Boussinesq approximation and is most valid forA!1. NS using
front tracking are designated with FT.

Simulation/zoning n0 k0kh0k0
l ab

(1) Youngs[16]

16031603270 30 0.08 0.03

(2) Cook and Dimotakis[19]

25632563512

Case A 4 0.3 0.05–0.08

Case B 9 0.6 0.03–0.05

Case C 13 0.9 0.02–0.03

(3) Young et al. [20]

25632563512 13 0.9 0.03

(4) Glimm et al. [17]

11231123224 12 0.4 0.05

12 0.4 0.08 FT

(5) Oron et al. [18]

80380380 Î300 0.05 FT

FIG. 15. The effect of mode coupling for an annular spectrum
like the NS in Table III. Here the mode-coupling productkkH0kl is
evaluated using Eq.(34) assumingk=2p /L for each NS in Table III
(points with designation in Table III). The lines are obtained by
substitutingkkh0kl for kkh0kl in Eq. (22) for C=0.95 (solid) and
0.56 (dashed).
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until an autocorrelation(resolution) time after the onset of
nonlinearity. This implies that individual modes saturate at
smaller amplitudeshk,1/k2L than suggested by Birkhoff
hk,1/k and that the simplest self-similar solution occurs for
initial perturbations of the formh0k,1/k2 as suggested by
Inogamov[5,6] rather thanh0k,1/k suggested by Birkhoff
[3]. This mode suppression was measured directly in a beam-
plasma experiment[61].

The most important model parameterC determines the
terminal bubble velocity as defined by Eq.(9) and it can vary
slowly with A to accommodate Eq.(8). C can be related to
the more basic constant Fr in Eq.(2) on a physical basis by
defining a relation betweenDb andlb [Eq. (11)], but it may
also absorb additional uncertainties in this model. The model
is able to describe the LEM data withC,0.95 or Fr,0.8
which is similar to that obtained in Fig. 12 by analyzing
individual RT bubbles[43,21,22,14,24]. This is important
because using the anticipated value of Fr,1/Îp for a square
periodic bubble array and the observedDb/hb,0.55rh/Sr
in Eq. (3) yields anab,0.022 that is smaller than observed.
This led Glimm and collaborators[21–24] to suggest an en-
velope instability that augments the Fr in a chaotic RT
bubble front and obtainedab,0.05–0.06 andDb/hb,1/3
independent ofA. Others[23,24,18] have tried to compen-
sate for the small Fr of a periodic array by increasing the
merger rate, but this makeslb/hb,1 in 3D [18] which is
,33 larger than observed(Fig. 13). These results suggest
that RT bubbles behave as a chaotic array with Fr,1 and
Db/hb,1/3–1/2 rather than a periodic array with Fr
,0.56 andDb/hb,1.

The second model parameter«b describes the effective
spectral width of the dominant bubbles and is used to obtain
kkh0kl from the measured initial spectrum. As such,ab and
bb depend only logarithmically onÎ«b. By calculating the
just saturated modeks relative to the dominant modekb, we
estimate«b,3/8 which is consistent with the spectral width
obtained in a 3D bubble merger model[18].

The present model is able to describe the LEM measure-
ments[12–14] of ab andbb with C,0.95 as shown in Figs.
5 and 13. The initial amplitude in the LEM experiments is
obtained from early-time LIF images taken when the pertur-
bations are barely nonlinear and these are projected back to
t=0 using the well known exponential growth. The perturba-
tions are found to exceed the thermal fluctuations in propor-
tion to g as seen in Fig. 10 and this suggests that they are

excited in transit. For the Atwood variation experiments with
gs30–100dg0, it was found thatkkh0kl=s4±2.7d310−4 in the
rangek,25–45 cm−1. This value is used at all wavelengths
which assumes that the initial spectrum varies ask−2, but this
should be measured in future experiments. However, by ana-
lyzing individual bubbles in RT experiments, it is clear that
they have Fr,0.8–1.2 as indicated in Refs.[43,21,22,14,24]
in Table I and Fig. 12 here. This exceeds the Fr,0.56 for a
periodic array in Table II[34,37–41] but it is comparable to
the Fr,1.2 for plumes[36].

The present model is also compared with published mul-
timode NS summarized in Table III. Since the NS had an
initial spectrum peaked at a finitek and devoid of low-k
modes that dominate asymptotically whenab is typically
measured, it is necessary to evaluate the generation or aug-
mentation of long wavelenth perturbations by mode cou-
pling. This was done using Haan’s formulation[52] and the
results depend on the effective spectral widthdk,3/8k. The
contribution of mode coupling is found to be important when
the product waves from saturated high-k modes exceed the
ambient perturbations at lowk. As shown in Fig. 14, the net
effect of mode coupling is to produce a lower bound inab at
small initial amplitude that is insensitive to the initial condi-
tions. The present model is consistent with previous NS, but
since their initial conditions were somewhat unclear and
more complex thanh0k,1/k2, the results could not distin-
guish betweenC,0.56 and 0.95. More 3D NS with well
specified initial conditions are required to clarify these is-
sues. It should be repeated that the mode-coupling contribu-
tion described here is not a general theory of mode coupling
since it does not describe the usual progression to longer
wavelength by a cascading process. The latter is done better
by merger models[21–26].
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